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Abstract Two mononuclear Cu(I) complexes based on 2-(2-
pyridyl)benzimidazolyl derivative ligand containing electron-
transporting 1,3,4-oxadiazole group (L), [Cu(L)(PPh3)2](BF4)
and [Cu(L)(DPEphos)](BF4), where L=1-(4-(5-(4-tert-
butylphenyl)-1,3,4-oxadiazol-2-yl)benzyl)-2-(pyridin-2-
y l ) b e n z i m i d a z o l e a n d D P E p h o s = b i s [ 2 -
(diphenylphosphino)phenyl]ether, have been successfully
synthesized and characterized. The X-ray crystal structure
analyses of the ligand L and the complex [Cu(L)
(PPh3)2](BF4) were described. The photophysical properties
of the complexes were examined by using UV–vis,
photoluminescence spectroscopic analysis. The doped light-
emitting devices using the Cu(I) complexes as dopants were
fabricated. With no electron transporting layers employed in
the devices, yellow electroluminescence from Cu(I) com-
plexes were observed. The devices based on the complex
[Cu(L)(DPEphos)](BF4) possess better performance as com-
pared with the devices fabricated by the complex [Cu(L)
(PPh3)2](BF4). The devices with the structure of ITO/MoO3

(2 nm)/NPB (40 nm)/CBP:[Cu(L)(DPEphos)](BF4) (8 wt%,
30 nm)/BCP (30 nm)/LiF (1 nm)/Al (150 nm) exhibit a
maximum efficiency of 3.04 cd/A and a maximum brightness
of 4,758 cd/m2.
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Introduction

Luminescent transition metal complexes have been ex-
tensively investigated due to their various applications
ranging from organic light-emitting diodes (OLEDs)
[1–3] and light emitting electrochemical cells (LEECs)
[4, 5] to biological sensors [6–9]. By choosing appro-
priate metal ions and organic ligands, it is possible to
control and coordinate the structures and the photonic
properties of metal complexes.

Since Forrest and co-workers [10] successfully uti-
lized the phosphorescent material PtOEP (platinum
octaethylporphyrin) to fabricate light-emitting devices,
many heavy-metal complexes have been extensively in-
vestigated in highly efficient electrophosphorescent or-
ganic light-emitting diodes [1, 11–14]. In the heavy-
metal phosphorescent complexes, although Cu(I) com-
plexes have relatively low quantum yields as compared
with Ir(III) cyclometalated complexes, phosphorescent
Cu(I) complexes have attracted much attention as a
new class of optoelectronic materials in chemical sen-
sors, probes of biological systems and OLEDs because
of their advantages of less toxic, low cost, stable supply
of copper metal and environmental friendliness [1,
10–14]. From previous publications, mono-, bi- and
polynuclear Cu(I) acetylide complexes exhibited long-
lived intense phosphorescence both in the solid state
and solution, judicious selection of the acetylide group
may be used to tune the emission wavelength across the
vision spectrum from the blue to the red on substitution
with increasingly electron-rich ligands [15, 16]. Recent-
ly, the heteroleptic [Cu(N^N)(P^P)]+ complexes (where
N^N and P^P denote a chelating bisimine ligand and a
bisphosphine ligand, respectively) have attracted great
attention because they exhibit greatly enhanced emission
performance by the highly rigid and stronger metal-
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phosphine bonding [17–21]. It has been shown that
increased structural rigidity reduces radiationless deacti-
vation pathways in mononuclear Cu(I) complexes lead-
ing to strongly enhanced quantum yields. For these
Cu(I) complexes, the highest occupied molecular orbital
(HOMO) has a predominant metal d character, possibly
mixed with a small contribution from the bis-phosphine
ligand, while the lowest unoccupied molecular orbital
(LUMO) is essentially residing on the π* orbital local-
ized on the bisimine ligand [22].

In recent years some examples have confirmed the
suitability of such Cu(I) complexes as emitters in
OLEDs [19, 22–27], but most Cu(I) complexes are
unstable toward sublimation and poor soluble or unsta-
ble in solution and hence not amenable to the vacuum
deposition or solution-processed methods used to fabri-
cate OLEDs, few devices containing Cu(I) complexes
have been reported. The strongly appealing possibility
of using cheap Cu(I) complexes for replacing the more
expensive complexes based on Ir(III) or other metal ions
is still a challenge and under investigation.

In this work, two new mononuclear Cu(I) complexes
containing electron-transporting 1,3,4-oxadiazole moiety,
[Cu(L)(DPEphos)](BF4) and [Cu(L)(PPh3)2](BF4) (L=
1-(4-(5-(4-tert-butylphenyl)-1,3,4-oxadiazol-2-yl)benzyl)-
2-(pyridin-2-yl)benzimidazole), were synthesized and
characterized. The photophysical properties of the
complexes were examined by us ing UV–v i s ,
photoluminescence spectroscopes analysis. Furthermore,
the devices made using codeposition of the Cu(I) com-
plexes and 4,4′-Bis(9-carbazolyl)biphenyl (CBP) films
as emitters were fabricated. The synthetic routes of the
ligand (L) and the Cu(I) complexes were shown in
Scheme 1.

Experimental Section

Materials and Methods

Cu(BF4)2•6H2O, bis[2-(diphenylphosphino)phenyl]ether
(DPEphos) were purchased from Aldrich. 2-(2-
pyridyl)benzimidazole and triphenylphosphine (PPh3) were
obtained from Acros Organics. Copper powder was from
Shenyang Keda Chemical Reagent Factory (China). Molyb-
denum trioxide (MoO3), 4,4′-Bis(9-carbazolyl)biphenyl
(CBP), N,N′-bis-(naphthyl)-N,N′-diphenyl-1,1′-biphenyl-
4,4′-diamine (NPB) were purchased from Electro-Light Tech-
nology Corp., Beijing. Bathocuproine (BCP) was obtained
from Sigma-Aldrich. All other chemicals were analytical
grade reagent.

The intermediate, 2-[4-(Bromomethyl)phenyl]-5-(4-
tertbutylphenyl)-1,3,4-oxadiazole (I), was obtained as

previously described [28]. [Cu(NCCH3)4](BF4) was obtained
by reaction of Cu(BF4)2•6H2O and copper powder in aceto-
nitrile according to the method reported by Kubas [29].

IR spectra (400–4,000 cm−1) were carried out using
a Shimadzu IRPrestige-21 FT-IR spectrophotometer. 1H
NMR spectra were obtained on Unity Varian-500 MHz.
Elemental analyses were obtained using an Elemental
Vario-EL automatic elemental analysis instrument.
Melting points were measured by using an X-4 micro-
scopic melting point apparatus (Beijing Taike Instru-
ment Limited Company). UV–vis absorption and
photoluminescent spectra were recorded on a Shimadzu
UV-2550 spectrometer and on a Perkin-Elmer LS-55
spectrometer, respectively. The electroluminescent
spectra were measured on a PR-650 SpectraScan
Colorimeter.

Synthesis and Characterization
of 1-(4-(5-(4-Tert-Butylphenyl)-1,3,4-Oxadiazol-2-yl)
Benzyl)−2-(Pyridin-2-yl)Benzimidazole (L)

Under N2, solid NaH (60 % dispersed in mineral oil,
0.204 g) and 2-(2-pyridyl)benzimidazole (0.708 g,
3.65 mmol) in 20 mL of anhydrous DMF was stirred
at 80 °C for 2 h. The resulting solution was cooled to
room temperature and 2-[4-(Bromomethyl)phenyl]-5-(4-
tertbutylphenyl)-1,3,4-oxadiazole (I) (1.68 g, 4.53 mmol)
was added. The mixed solution was stirred at 80 °C for
36 h. After completing, the reaction mixture was poured
into 100 mL of cool water, and was extracted with
dichloromethane (3×50 mL). The organic phase was
washed with water and dried over anhydrous MgSO4.
After removal of solvent, the residue was purified by
column chromatography using ethyl acetate / petroleum
ether (3 : 20, v/v) as the eluent to give a white powder
(1.51 g, 85.8 %). m.p.:201–203 °C. IR (KBr pellet
cm−1): 3052 (Aryl-CH), 2966 and 2865(−CH3,
−CH2–), 1617, 1589, 1494, 1441, 1426, 1388, 1364,
1326, 1263, 1168, 1073, 1020, 992, 834, 752. 1H
NMR(CDCl3, δ, ppm): 8.61 (d, 1H, J=5.4, Aryl-H),
8.47 (d, 1H, J=7.3, Aryl-H), 8.02 (t, 4H, J=8.8, Aryl-
H), 7.90-7.83 (m, 2H, Aryl-H), 7.53 (d, 2H, J=6.8,
Aryl-H), 7.36-28 (6H, m, Aryl-H), 6.27 (s, 2H, N-
CH2– ) , 1 .37 (s , 9H, −CH3) . Anal . Ca lc . fo r
C31H27N5O (%): C, 76.68; H, 5.60; N, 14.42. Found:
C, 77.03; H, 5.51; N, 14.55.

Synthesis and Characterization of [Cu(L)(DPEphos)](BF4)
and [Cu(L)(PPh3)2](BF4)

[Cu(L)(DPEphos)](BF4) and [Cu(L)(PPh3)2](BF4) were syn-
thesized by following procedures described in the literatures
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[30]. All manipulations were performed under a nitrogen
atmosphere.

A mixture of [Cu(NCCH3)4](BF4) (1.0 mmol) and
PPh3 (2.0 mmol) or DPEphos (1.0 mmol) in anhydrous
dichloromethane (10 mL) was stirred at room tempera-
ture for 1 h. 1-(4-(5-(4-tert-butylphenyl)-1,3,4-oxadiazol-
2-y l )benzyl ) -2- (pyr id in-2-yl )benz imidazole (L)
(1.0 mmol) in dichloromethane solution was added to
the reaction mixture dropwise and stirring was contin-
ued for 12 h at room temperature to result in a clear
yellow solution. The reaction mixture was concentrated
to 5 mL, and hexane (15 mL) was then introduced to
afford a yellow precipitate. The crude product was crys-
tallized from toluene/hexane at ambient temperature to
give air-stable, bright yellow crystals.

[ C u ( L ) ( D P E p h o s ) ] ( B F 4 ) A n a l . C a l c . f o r
C67H55N5O2P2CuBF4 (%): C, 68.52; H, 4.72; N, 5.96.
Found: C, 69.21; H, 4.65; N, 5.78. 1H NMR(CDCl3, δ,
ppm): 8.19 (d, 1H, J=4.8 Hz, Aryl-H), 8.09 (d, 2H, J=
8.4 Hz, Aryl-H), 8.04 (d, 2H, J=8.4, Aryl-H), 8.00-7.95
(m, 2H, Aryl-H), 7.54 (d, 2H, J=8.4 Hz, Aryl-H), 7.48

(d, 1H, J=8.4, Aryl-H), 7.39 (t, 4H, J=8.0, Aryl-H),
7.36-7.30 (m, 4H, Aryl-H), 7.26-7.11 (m, 16H, Aryl-H),
7.03-6.92 (m, 6H, Aryl-H), 6.86 (d, 4H, J=5.2, Aryl-H),
6.00 (s, 2H, N-CH2–), 1.62 (s, 9H, −CH3).

[Cu(L)(PPh3)2](BF4) Anal. Calc. for C67H57N5P2OCuBF4
(%): C, 69.34; H, 4.95; N, 6.03. Found: C, 70.07; H, 5.06;
N, 6.12. 1H NMR(CDCl3, δ, ppm): 8.22 (d, 1H, J=5.2 Hz,
Aryl-H), 8.13 (d, 1H, J=7.8 Hz, Aryl-H), 8.06 (t, 5H, J=5.6,
Aryl-H), 7.54 (t, 2H, J=8.4, Aryl-H), 7.47 (d, 1H, J=9.6 Hz,
Aryl-H), 7.42 (t, 1H, J=6.8 Hz, Aryl-H), 7.36 (t, 7H, J=7.2,
Aryl-H), 7.29 (t, 4H, J=8.4 Hz, Aryl-H), 7.18 (t, 12H, J=
7.6 Hz, Aryl-H), 7.11 (d, 12H, J=7.2 Hz, Aryl-H), 6.09 (s,
2H, N-CH2–), 1.37 (t, 9H , −CH3).

Crystallography

The diffraction data were collected with a Bruker Smart
Apex CCD area detector with graphite-monochromatized
Mo-Kα radiation (λ=0.71073 Å) at 188(2) K. The
structure was solved by using the program SHELXL
and Fourier difference techniques, and refined by full-
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matrix least-squares method on F2. All hydrogen atoms
were added theoretically.

OLEDs Fabrication and Characterization

The multilayer OLEDs with a device architecture of
ITO/MoO3 (2 nm)/NPB (40 nm)/CBP:Cu(I) complex
(x wt %, 30 nm)/BCP (30 nm)/LiF (1 nm)/Al
(150 nm) were fabricated by vacuum-deposition method.
All organic layers were sequentially deposited without
breaking vacuum (2×10−5 Pa). Thermal deposition rates
for organic materials, LiF and Al were~2 Å/s, ~ 1 Å/s
and 10 Å/s, respectively. The active area of the devices
was 12 mm2. The EL spectra and Commission
Internationale de L’Eclairage (CIE) coordinates were
measured on a Hitachi MPF-4 fluorescence spectrome-
ter. The characterization of brightness-current–voltage
(B–I–V) were measured with a 3,645 DC power supply

combined with a 1980A spot photometer and were
recorded simultaneously. All measurements were done
in air at room temperature without any encapsulation.

Results and Discussion

Syntheses of the Ligand L and the Cu(I) Complexes

The ligand L was obtained by reaction of the intermediate I
with 2-(2-pyridyl)benzimidazole in the presence of NaH as a
base. The ligand L was fairly soluble in most common sol-
vents, such asMeOH, CH2Cl2, CHCl3 and EtOAc. The ligand
Lwas fully characterized by elemental analysis, 1H NMR, FT-
IR and X-ray single crystal analysis.

The Cu(I) complexes [Cu(L)(DPEphos)](BF4) and
[Cu(L)(PPh3)2](BF4) were obtained by reaction of
[Cu(NCCH3)4](BF4) with L and different ancillary

Table 1 Crystallographic data for
the Ligand L and the Cu(I)
complex

Compound L [Cu(L)(PPh3)2](BF4)•2CH2Cl2

Empirical formula C31H27N5O C69H61N5P2OCuBF4Cl4
Formula weight 485.58 1330.32

Temperature (K) 188(2) 185(2)

Wavelength (Å) 0.71073 0.71073

Crystal system Triclinic Triclinic

Space group P-1 P-1

Unit cell dimensions

a (Å) 6.2430(7) 15.0070(8)

b (Å) 9.7305(11) 20.7612(11)

c (Å) 20.938(2) 22.8166(12)

α (o) 92.008(2) 101.8768(8)

β (o) 94.428(2) 105.9971(8)

γ (o) 94.767(2) 100.3098(7)

Volume (Å3), Z 1262.6(2), 2 6473.9(6), 4

Density (calculated) (g/cm3) 1.277 1.365

Absorption coefficient (mm−1) 0.080 0.611

F (000) 512 2744

Crystal size (mm) 0.39×0.28×0.20 0.32×0.24×0.11

θ range for data collected (o) 1.95 ─ 26.02 1.59 ─ 26.02

Limiting indices −7≤h≤7, −18≤h≤16,
−11≤k≤11, −25≤k≤25,
−25≤l≤24 −25≤l≤28

Reflections collected 7867 41508

Independent reflections 4821 (Rint=0.0203) 24966 (Rint=0.0197)

Max. and min. transmission 0.9842 and 0.9695 0.9358 and 0.8285

Data / restraints / parameters 4821 / 0 / 337 24966 / 0 / 1573

Goodness-of-fit on F2 1.020 1.024

Final R indices [I>2σ (I)] R1=0.0549, wR2=0.1283 R1=0.0533, wR2=0.1362

R indices (all data) R1=0.0814, wR2=0.1436 R1=0.0761, wR2=0.1517

Largest diff. Peak and hole (eÅ−3) 0.264 and −0.201 0.768 and −0.714
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phosphoric ligands (PPh3 and DPEphos ) in anhydrous di-
chloromethane. The Cu(I) complexes were also examined by
elemental analysis, 1H NMR. The structure of [Cu(L)(-
PPh3)2](BF4) was characterized by X-ray single crystal
analysis.

X-ray Crystal Structure of the Ligand L and the Complex
[Cu(L)(PPh3)2](BF4)

Suitable crystal of the ligand L was obtained by evaporation
of ethyl acetate solution. Suitable crystal of [Cu(L)(-
PPh3)2](BF4) complex was obtained by the vapor diffusion
of diethyl ether into the dichloromethane solution of the Cu(I)
complex, it is yellow crystal. The crystallographic data of L
and [Cu(L)(PPh3)2](BF4) are shown in Table 1. The selected
bond lengths and bond angles of L and [Cu(L)(PPh3)2](BF4)
are listed in Table 2.

The crystal structure and packing diagram ofL are given in
Fig. 1. As shown in Fig. 1a, the pyridyl ring and benzimid-
azole ring of 2-(2-pyridyl)benzimidazole moiety is not in a

plane, the dihedral angel of them is 19.9°. In diaryl-1,3,4-
oxadiazole moiety, the 1,3,4-oxadiazole ring and two adjacent
phenyl rings are not also in a coplane, and the dihedral angels
between the 1,3,4-oxadiazole ring and two adjacent phenyl
rings are 8.6° and 10.1°, respectively. The dihedral angels
between benzyl ring and the pyridyl ring and benzimidazole
ring of 2-(2-pyridyl)benzimidazole moiety are 78.6° and
74.4°, respectively. From the packing diagram of L
(Fig. 1b), there are weak intermolecular π-π interactions be-
tween the 2-(2-pyridyl)benzimidazole skeletons of two adja-
cent molecules along b-axis in crystal lattices, the interplanar
distance of the 2-(2-pyridyl)benzimidazole skeletons is ap-
proximately 3.69 Å.

Figure 2 gives the crystal structure of [Cu(L)(PPh3)2](BF4)
complex. It indicates that the asymmetric unit of [Cu(L)(-
PPh3)2](BF4) complex consists of two crystallographic-
separate complexes and four dichloromethane molecules.
Thus, the crystal of the Cu(I) complex suitable for X-ray
analysis was described as the solvate species 2[Cu(L)(-
PPh3)2](BF4)•4CH2Cl2. As shown in Fig. 2, the coordination
center of Cu atom is surrounded by two N atoms from L
ligand and two P atoms from two PPh3 ligands, displaying
distorted tetrahedral coordination geometry. The intersection
angle of N(1)-Cu(1)-N(2) and P(1)-Cu(1)-P(2) planes is as
large as 84.4°, and the N(1)-Cu(1)-N(2) and P(1)-Cu(1)-P(2)
bond angles are 78.55 (9)o and 121.27 (3)o, respectively. The
two Cu-P (Cu(1)-P(1) and Cu(1)-P(2)) bond lengths are
2.2630 (8) and 2.2552 (8) Å, respectively. The Cu(1)-N(1)
(pyridyl) bond length (2.115 (2) Å) is longer than the Cu(1)-
N(2) (imidazolyl) bond length (2.038 (2) Å), which means
that the intermolecular attraction between Cu(I) center and N
(imidazolyl) is stronger than that between Cu(I) center and N
(pyridyl). The N(7)-Cu(2)-N(6) and P(3)-Cu(2)-P(4) bond
angles are 79.33 (9)o and 124.09 (3)o, respectively.

For the chelated ligand L in the crystal, the dihedral angle
between the pyridyl ring and the benzimidazolyl ring is 3.5°,
which is smaller than that of them in free Ligand L (19.9°). It
suggests that the plane of pyridyl ring and the plane of benz-
imidazole ring takes place slight distortion and goes to be a
coplane due to coordination of two N atoms to the Cu center
atom.

Owing to highly disordered effect of the phenyl rings of
PPh3 ligands and steric hindrance of diaryl-1,3,4-oxadiazole
moiety of ligand L, there is no intermolecular or inner molec-
ular π-π stacking interaction in the crystal lattice.

UV–vis Absorption and Photoluminescence of the Cu(I)
Complexes

The UV–vis absorption spectra of dilute dichloromethane
solutions of the Cu(I) complexes and the free ligands are
shown in Fig. 3. The absorption spectra of free DPEphos
and PPh3 are similar, exhibiting two absorption bands at 234

Table 2 Selected interatomic distances (Å) and angles (o) of L and the
Cu(I) complex

Ligand L

C(1) – N(1) 1.389(3) C(17) – N(4) 1.435(3)

C(6) – N(2) 1.392(3) C(20) – N(4) 1.292(3)

C(7) – N(2) 1.319(3) C(21) – N(5) 1.293(3)

C(7) – N(1) 1.376(2) C(20) – O(1) 1.362(2)

C(8) – N(3) 1.334(3) C(21) – O(1) 1.368(2)

C(12) – N(3) 1.346(3) N(4) – N(5) 1.410(2)

C(13) – N(1) 1.465(2)

C(2)–C(1)-N(1) 131.52(19) C(7)-N(1)–C(1) 105.87(16)

C(6)–C(1)-N(1) 105.98(18) C(7)-N(1)–C(13) 131.08(16)

C(5)–C(6)-N(2) 130.52(19) C(1)-N(1)–C(13) 122.73(16)

C(1)–C(6)-N(2) 109.73(18) C(7)-N(2)–C(6) 104.98(16)

N(1)–C(7)-N(2) 113.43(18) C(8)-N(3)–C(12) 116.5(2)

N(2)–C(7)–C(8) 120.81(18) N(3)–C(8)–C(7) 118.62(18)

N(1)–C(7)–C(8) 125.76(18) N(3)–C(12)–C(11) 124.0(3)

N(3)–C(8)–C(9) 122.6(2) N(1)–C(13)-C(14) 112.76(16)

[Cu(L)(PPh3)2](BF4)•2CH2Cl2
Cu(1) – N(1) 2.115(2) Cu(2) – N(6) 2.124(2)

Cu(1) – N(2) 2.038(2) Cu(2) – N(7) 2.048(2)

Cu(1) – P(1) 2.2630(8) Cu(2) – P(3) 2.2424(8)

Cu(1) – P(2) 2.2552(8) Cu(2) – P(4) 2.2544(8)

N(1)-Cu(1)-N(2) 78.55(9) N(7)-Cu(2)-N(6) 79.33(9)

N(2)-Cu(1)-P(2) 113.94(7) N(7)-Cu(2)-P(3) 113.07(7)

N(1)-Cu(1)-P(2) 115.96(7) N(6)-Cu(2)-P(3) 114.89(7)

N(2)-Cu(1)-P(1) 114.60(7) N(7)-Cu(2)-P(4) 112.40(7)

N(1)-Cu(1)-P(1) 104.29(6) N(6)-Cu(2)-P(4) 103.92(7)

P(2)-Cu(1)-P(1) 121.27(3) P(3)-Cu(2)-P(4) 124.09(3)
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Fig. 2 Crystal structure of [Cu(L)(PPh3)2](BF4) complex

(a)

(b)

Fig. 1 Crystal structure (a) and
packing diagram (b) of the ligandL
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and 260 nm. The free ligand L has two intensive absorption
bands at 228 and 297 nm, respectively. The absorption spectra
of the complexes [Cu(L)(DPEphos)](BF4) and [Cu(L)
(PPh3)2](BF4) strongly resemble each other, which can be
described as two components: an intense absorption region
in high energy band ranging from 220 to 360 nm and a weak

absorption region in low energy band ranging from 360 to
480 nm. In intense absorption region, there are two visible
absorption peaks at 229 and 294 nm. Comparing with the
absorption spectra of free ligands, the high energy absorption
bands of the complexes are found to be quite similar to those
of free ligands and thus attributed to the π→π* transitions of
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the ligands. The weak absorption band of the complex
[Cu(L)(DPEphos)](BF4) or [Cu(L)(PPh3)2](BF4), which is a
newly generated one compared with those of free ligands, is
assigned to metal-to-ligand charge-transfer (MLCT) transi-
tions [18, 31].

Influences of different environments on the emission
properties of the complexes have been investigated.
Ambient temperature emission spectra of the thin films
and the dichloromethane solutions are shown in Fig. 4.
It is found that the photoluminescence spectra of the
complexes [Cu(L)(DPEphos)](BF4) and [Cu(L)(-
PPh3)2](BF4) strongly resemble each other. The emis-
sion spectra of the complexes are relatively broad and
featureless whether in thin films or in dichloromethane
solutions, which are assigned to the dπ(Cu)→
π*(diimine) (3MLCT) excited state, it suggests that the
emissive states have a charge-transfer character [32].
The emission maxima for [Cu(L)(DPEphos)](BF4) and
[Cu(L)(PPh3)2](BF4) as thin films locate at 568 nm,
while the maxima are significantly red-shifted when
measured in dichloromethane solutions exhibiting maxi-
ma at 638 and 620 nm, respectively. The result shows
that the emission wavelengths strongly depend on the
environment of the complexes. The observation can be
explained by changes of the molecular geometry of the
Cu(I) complexes which take place after MLCT excita-
tion. In dichloromethane solutions, large rearrangements
of the molecular geometry upon excitation can take
place easily, which enhance radiationless deactivation
processes leading to a considerable decrease of emission
quantum yields. Similar phenomena have already been
reported for several Cu(I) complexes [33, 34].
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Fig. 5 The molecular structures
of materials and the structure of
EL devices
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Fig. 6 EL spectra of the devices with various [Cu(L)(DPEphos)](BF4)
concentrations at applied voltage 8 V (a) and EL spectra of the devices
used [Cu(L)(PPh3)2](BF4) as a dopant (15 wt%) at different applied
voltages (b)
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OLEDs Performance of [Cu(L)(DPEphos)](BF4) and [Cu(L)
(PPh3)2](BF4)

The molecular structures of the materials and the de-
vices with a configuration of ITO/MoO3 (2 nm)/NPB
(40 nm)/CBP:Cu(I) complex (x wt%, 30 nm)/BCP
(30 nm)/LiF (1 nm)/Al (150 nm) were depicted in
Fig. 5. The emitting layers are consisted of host mate-
rials CBP and dopants of the complexes [Cu(L)(-
DPEphos)](BF4) or [Cu(L)(PPh3)2](BF4) at different
concentrations (x wt%). MoO3 and NPB were used as
hole injection and hole transport materials, respectively.
Bathocuproine (BCP) acts as the exciton blocking, and
LiF was used as the electron-injection layer.

Figure 6 shows the electroluminescent (EL) spectra
of the devices with various [Cu(L)(DPEphos)](BF4)
concentrations at applied voltage 8 V and EL spectra
of the devices used [Cu(L)(PPh3)2](BF4) as dopant
(15 wt%) at different applied voltages. It was found
that the EL spectral features of the devices used
[Cu(L)(DPEphos)](BF4) or [Cu(L)(PPh3)2](BF4) as
dopants do not change with different concentrations
or different applied voltages. As shown in Fig. 6. no
emission from the host CBP was found in EL spectra, indi-
cating that charge trap occurred in the device operation beside
the energy-transfer process. The doped devices of

[Cu(L)(DPEphos)](BF4) and [Cu(L)(PPh3)2](BF4) exhibit
yellow emissions with the maximum peaks at ca. 570 nm.
The EL spectra of [Cu(L)(DPEphos)](BF4) and [Cu(L)(-
PPh3)2](BF4) are identical to the PL spectra of them in thin
films. The result indicates that the EL emissions take place
from [Cu(L)(DPEphos)](BF4) and [Cu(L)(PPh3)2](BF4)
molecules.

The electroluminescent devices with different doping con-
centrations varying from 5, 8 and 15wt%were fabricated. The
representative luminance voltage and current efficiency volt-
age characteristics of the devices doped [Cu(L)(-
DPEphos)](BF4) with different concentrations are depicted
in Fig. 7. and the data of OLEDs performance are listed in
Table 3. As shown in Table 3, the current efficiencies of the
devices increase to the highest with increasing the concentra-
tion to 8 wt%, and further enhancement of the concentration
results in reduction of the current efficiency. The turn-on
voltages of the devices are between 6.0 V and 6.8 V, and the
maximum brightness is between 3,586 cd/m2 and 5,048 cd/
m2. By comparing the performance of different doping con-
centrations, the 8 wt% [Cu(L)(DPEphos)](BF4) doped device
has a maximum efficiency of 3.04 cd/A at 1.65 mA/cm2,
which has a yellow color with a CIExy of (0.45, 0.48). Even
at 10 mA/cm2, the doped device has a maximum efficiency of
2.35 cd/A. The device shows a turn-on voltage of about 6.5 V,
the maximum brightness is about 4,758 cd/m2 at 12.3 V.
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Fig. 7 The luminance vs. voltage (left) and current efficiency vs. voltage (right) curves of the devices with different [Cu(L)(DPEphos)](BF4)
concentrations

Table 3 EL performances of the OLEDs based on Cu(I) complexes

Complex Doped concentration
(wt%)

Maximum efficiency
(cd/A)

Efficiency at 10 mA/cm2

(cd/A)
Maximum brightness
(cd/m2)

Emission wavelength
(nm)

[Cu(L)(DPEphos)](BF4) 5 % 2.73 2.02 3,586 570

8 % 3.04 2.35 4,778 571

15 % 2.98 2.39 5,048 573

[Cu(L)(PPh3)2](BF4) 15 % 0.47 0.38 575 570
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For [Cu(L)(PPh3)2](BF4) complex, the EL performances of
devices with different doping concentrations varying from 5, 8
and 15 wt% were also investigated, in which only the device
with a doping concentration of 15 wt% can normally work.
The luminance voltage and current efficiency voltage charac-
teristics of the device doped [Cu(L)(PPh3)2](BF4) concentra-
tion of 15 wt% are shown in Fig. 8. and the data of OLEDs
performance are listed in Table 3. The device with a turn-on
voltage of 8.3 V, maximum current efficiency of 0.47 cd/A,
maximum brightness of 575 cd/m2 has been observed.

As shown in Table 3, we can see that the ancillary ligands
play a significant impact on the EL performances of the Cu(I)
complexes. Compared with the devices based on [Cu(L)(-
DPEphos)](BF4) complex, the device made from [Cu(L)(-
PPh3)2](BF4) complex exhibits much poorer EL performance.
Compared to the monodentate ligand PPh3, DPEphos is a
bidentate ligand, causing larger molecular rigidity for
[Cu(L)(DPEphos)](BF4). Moreover, the chelate DPEphos li-
gand may increase the emission quantum efficiency and short
the decay lifetime of [Cu(L)(DPEphos)](BF4) [27].

From the configuration of the devices, though no electron
transporting layers designedly employed in the devices, yel-
low EL emissions were observed from the devices used the
Cu(I) complexes as dopants. It indicates that [Cu(L)(-
DPEphos)](BF4) and [Cu(L)(PPh3)2](BF4) complexes have
definite electron transporting ability because the ligand L
was incorporated a diaryl-1,3,4-oxadiazole moiety, which val-
idates our primal idea for the ligand L.

From the above results, we can see that the EL perfor-
mances of the devices based on the cationic Cu(I) complexes
were undesirable. The poorer EL performances may be caused
by some factors such as the longer decay lifetime, unbalance
of the charge carrier and the increased current density which
was caused by the drifting and accumulating of BF4

− coun-
terions towards the anode (ITO) upon application of a bias,
injection and so on. The longer decay lifetimes of the Cu(I)
complexes based on 2-(2′-pyridyl)benzimidazolyl ligand are
their intrinsic property [18], which decrease the emission

quantum efficiency. If the appropriate hole and electron
transporting materials are chosen, improving the charge carri-
er injection balance in the devices, we should obtain much
better EL performances. Further investigation on the EL prop-
erties of the Cu(I) complexes are in progress.

Conclusion

A new 2-(2′-pyridyl)benzimidazole ligand (L) in which 2-(2′-
pyridyl)benzimidazole is linked to a diaryl-1,3,4-oxadiazole
moiety by a methylene spacer and two new mononuclear
Cu(I) complexes, [Cu(L)(DPEphos)](BF4) and [Cu(L)(-
PPh3)2](BF4), were successfully synthesized and character-
ized. The single crystal X-ray diffraction study of [Cu(L)(-
PPh3)2](BF4) reveals that the center Cu(I) ion assumes highly
distorted tetrahedral geometry. Both the emission wavelengths
as well as photoluminescence intensity strongly depend on the
environment of the complexes as neat films and in solutions.
The Cu(I) complexes are stable enough to be sublimated
during EL device fabr icat ion. At no electron
transporting layers employed in the devices, yellow EL
emissions were observed from the devices used the
Cu(I) complexes as dopants. The devices fabricated by
the complex [Cu(L)(DPEphos)](BF4) possess better per-
formance as compared with the devices fabricated by
the complex [Cu(L)(PPh3)2](BF4). When the doping
concentration is 8 wt%, the doped devices based on
[Cu(L)(DPEphos)](BF4) demonstrate a CIExy of (0.45,
0.48) with a maximum efficiency of 3.04 cd/A at
1.65 mA/cm2 and a maximum brightness of 4,758 cd/
m2 at 12.3 V.
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The crystallographic data (excluding structure factors) of the ligand L and
[Cu(L)(PPh3)2](BF4)•2CH2Cl2 had been deposited with the Cambridge
Crystallographic Data Center as supplementary publication no. CCDC
943611 and 943612, respectively.

J Fluoresc (2014) 24:933–943 943

http://dx.doi.org/10.1039/B800939B
http://dx.doi.org/10.1039/B800939B
http://dx.doi.org/10.1039/B812281D
http://dx.doi.org/10.1039/B812281D

	Synthesis,...
	Abstract
	Introduction
	Experimental Section
	Materials and Methods
	Synthesis and Characterization of 1-(4-(5-(4-Tert-Butylphenyl)-1,3,4-Oxadiazol-2-yl)Benzyl)−2-(Pyridin-2-yl)Benzimidazole (L)
	Synthesis and Characterization of [Cu(L)(DPEphos)](BF4) and [Cu(L)(PPh3)2](BF4)
	Crystallography
	OLEDs Fabrication and Characterization

	Results and Discussion
	Syntheses of the Ligand L and the Cu(I) Complexes
	X-ray Crystal Structure of the Ligand L and the Complex [Cu(L)(PPh3)2](BF4)
	UV–vis Absorption and Photoluminescence of the Cu(I) Complexes
	OLEDs Performance of [Cu(L)(DPEphos)](BF4) and [Cu(L)(PPh3)2](BF4)

	Conclusion
	References


